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ON A PROBLEM INVOLVING STRONGLY ORTHOGONAL ROOTS

QËNDRIM R. GASHI

Abstract. Fixing a natural number k and a root system R, we examine the maximal number of
sets of k mutually strongly orthogonal roots so that any two such distinct sets have the property
that the difference between their respective sum of all elements can itself be written as a sum of
k roots that are mutually strongly orthogonal. The problem that we address is derived from the
open question of (non-)existence of finite projective planes, which can be interpreted as belonging
to the root system of type A. We formulate the general problem for all root systems and provide
results in certain cases.
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Introduction

The notion of strongly orthogonal roots first appeared in the classical works of Harish-Chandra
[HC56], in the study of holomorphic discrete series representations, and of Kostant [Kos55], in
the study of conjugacy classes of real Cartan subalgebras (see also Sugiura [Sug59]). It has since
appeared in many articles from different mathematical fields (cf. [Moo64], [Sch75], [Oh98], [Her01],
[Pas01], [Mul02], [EHW04], [MR06], [Kal11], [Mil11], [BGP11], [Kos13]). Some of the properties of
strongly orthogonal roots have been studied in detail by Agaoka and Kaneda [AK02].

Our aim in this paper is to study a problem involving strongly orthogonal roots. Fixing a
natural number k, we will examine the differences between sums of k roots that are mutually
strongly orthogonal. We would like to understand, given a root system R, what is the maximal
number µk(R) of sets of k mutually strongly orthogonal roots so that any two such distinct sets
have the property that the difference between their respective sum of all elements can itself be
written as a sum of k roots that are mutually strongly orthogonal. We state precisely this problem
in Subsection 1.3 below.

The problem that we study is derived from the open problem of (non-)existence of finite pro-
jective planes. We will see in Section 2 how exactly to pass from incidence matrices of finite
projective planes to a problem involving strongly orthogonal roots in the root system of type A.
Our formulation of results is a generalization to all root systems.

Our current results do not immediately shed light on the veracity of the old conjecture that
finite projective planes exist only for orders of prime power. However, if we were to know that,
for a given k, we have µk(R) < k(k + 1) for R = Ak(k+1), then we would be able to conclude that
a finite projective plane of order k does not exist. In any case, since we do not have a complete
understanding of the numbers µk(R) for R = A`, but only for ` large enough and depending of k,
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we have to be satisfied at the moment only with a conjectural relation between our work and the
old conjecture.

This paper is organized as follows. We state our results, after including preliminary notions, in
the first section. Next, we explain how to relates those results to the existence of finite projective
planes. The last section is devoted to the proof of the main theorem.
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while on a sabbatical leave from University of Prishtina. He is also indebted to Bujar Shita for
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thanks Iain Gordon and the London Mathematical Society for a grant that enabled his stay at the
University of Edinburgh, where this project was first started.

1. Statement of results

1.1. Root systems. We recall the definition of a root system (for details, cf. [Bou02]). Let V be
a vector space over R and let ( , ) be an inner product on V . A finite subset R of non-zero elements
of V is called a root system if it satisfies the following:

(R1) R spans V;

(R2) For any α, β ∈ R, we have mα,β = 2 (β,α)
(α,α) ∈ Z;

(R3) For any α, β ∈ R, we have β −mα,βα ∈ R.

Elements of R are called roots. If for any α ∈ R and k ∈ Z we have kα ∈ R only for k = ±1,
then we say that R is reduced. The root system R is called irreducible if it is not the direct sum
of two root systems. The rank of R is the dimension of the subspace R(R) that is spanned by all
roots.

Irreducible, reduced root systems are of the following types:

A`, B`, C`, D`, E6, E7, E8, F4 or G2,

where the index denotes the corresponding rank.

1.2. Strongly orthogonal roots. In a given a root system R, two distinct roots α and β are
said to be strongly orthogonal if neither α + β nor α − β is a root. One can check immediately
that strongly orthogonal roots are also orthogonal with respect to the initial inner product, but the
converse does not hold in general (although in type A the two notions coincide).

1.3. Statement of the problem. Let R be a root system. A subset of R consisting of mutually-
strongly orthogonal roots is called a strongly orthogonal subset (SOS). Denote the set of all SOS’s
in R that have exactly k-elements by SOSk(R). If Γ ∈ SOSk(R), we denote by |Γ| the sum of the
elements of Γ.

We would like to understand the following general problem: Find the maximal number µ = µk(R)
such that there exist Γi ∈ SOSk(R) (i = 1, . . . , µ) with the property that for any two distinct i, j
there exists Γi,j ∈ SOSk(R) such that

(S) |Γi| − |Γj | = |Γi,j |.

Note that for k = 1 we are posing the question of finding the cardinality of the longest sequence
(γi) of roots of R such that γi − γj is also a root for all i 6= j.
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1.4. Results. Let us first remark that we already know when µk(R) = 0 from the fact that maximal
strongly orthogonal subsets have already been studied and it was established when SOSk(R) = ∅.
The point is to calculate µk(R) in other cases. Let us recall the known results about µk(R):

Proposition 1.1. (cf. [AK02], [BGP11]) The number µk(R) is zero in the following and only
following cases:

(i) For k >
⌊
`+1
2

⌋
when R = A`;

(ii) For k > ` when R = B`;
(iii) For k > ` when R = C`;
(iv) For k > 2

⌊
`
2

⌋
when R = D`;

(v) For k > 3 when R = F4;
(vi) For k > 4 when R = E6;
(vii) For k > 7 when R = E7;
(viii) For k > 8 when R = E8;
(ix) For k > 2 when R = G2.

In the case of root systems of type A, we understand the numbers µk(A`) for ` sufficiently large.

Theorem 1.2. Fix k ∈ N. There exists N = N(k) ∈ N such that

µk(A`) =

⌊
`− (k − 1)

k

⌋
holds for all ` ≥ N .

For k = 1 or 2, we have a complete answer

Theorem 1.3. We have that µ1(Al) = l.The sequence µ2(Al), with l ∈ N, is equal to b(l − 1)/2c
for l ≥ 13, and for l < 13 its terms are 0, 0, 1, 1, 3, 6, 6, 6, 6, 6, 6, 6.

A remark is in order on theorems 1.2 and 1.3. It is not unusual for some problems in mathematics
to encounter “obstruction” in low dimensions. The question we have posed seems to fit into that
category. So, for a fixed k, we have an “erratic” behavior of µk(A`) for small values of ` and
eventually that sequence stabilizes for large enough `.

The proof of Theorem 1.3 is a matter of tedious calculations. We also skip the proofs for the
following results for other root systems.

Theorem 1.4. (B1) For `� 0, µ1(B`) = `.
(B2) For `� 0,

µ2(B`) =

{
`− 2 if ` is even

`− 1 if ` is odd.

(C1) For `� 0, µ1(C`) = 2(`− 1).
(C2) For `� 0, µ2(C`) = `− 1.
(D1) µ1(D`) = `− 1,∀` ≥ 3.
(D2) For `� 0,

µ2(D`) =

{
`− 1 if ` is even

`− 2 if ` is odd.

(D3) For `� 0, we have

µ3(D`) =

{
4
⌊
`−4
4

⌋
+ 2 if ` ≡ 3(mod4),

4
⌊
`−4
4

⌋
+ 1 otherwise.
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(D4) For `� 0, µ4(D`) = `− 1.
(E) µ4(E6) = 2, µk(E6) = 0 for k ≥ 5.
(F) µ1(F4) = 4, µ2(F4) = 3, µ3(F4) = 3, µ4(F4) = 3, and µk(F4) = 0 for k ≥ 5.
(G) µ1(G2) = 3, µ2(G2) = 2, and µk(G2) = 0 for k ≥ 3.

2. Relation with the existence of finite projective planes

2.1. Finite projective planes. Let us recall that a finite projective plane of order n (n ∈ N) is
a collection of lines and points such that:

• every line contains n+ 1 points,
• every point is on n+ 1 lines,
• any two distinct lines intersect at exactly one point, and
• any two distinct points lie on exactly one line.

From these conditions it follows that if a plane of order n exists, then there must be exactly n2+n+1
points and n2 + n+ 1 lines. The existence of finite projective planes of order n can be reduced to
the existence of the corresponding incidence matrix X = (xij), where

(i) X is a square matrix of order n2 + n+ 1,
(ii) For each i, j we have xi,j ∈ {0, 1},

(iii) The sum of all entries in any row as well as in any column is n+ 1,
(iv) The inner product of any two distinct rows as well as of any two distinct columns is 1.

A well-known conjecture states that finite projective planes exist only for prime power order.
The conjecture remains open, although there are some quite general partial results, like the Bruck-
Ryser Theorem ([BR49]) which states that if a finite projective plane of order n exists and n is
congruent to 1 or 2 (mod 4), then n can be written as a sum of two squares. Many years ago C.
Lam proved ([Lam91]) the non-existence of projective planes of order 10 using a computer, but
even the case n = 12 remains elusive thus far.

2.2. Partial reformulation using root systems. Let us start with an illustrative example. The
incidence matrix, up to permutation, of the projective plane of order 2 is

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0


If we fix the first row and take its difference with each of the other rows, we get the following

matrix 
0 1 1 −1 −1 0 0
0 1 1 0 0 −1 −1
1 0 1 −1 0 −1 0
1 0 1 0 −1 0 −1
1 1 0 −1 0 0 −1
1 1 0 0 −1 −1 0


Considering rows as vectors inside R7, we get the following six vectors in the lattice of weights

of A6, which in the Bourbaki notation correspond to the following sums of two strongly orthogonal
roots: (α2 +α3 +α4) +α2, (α2 +α3 +α4 +α5 +α6) + (α3 +α4 +α5), (α1 +α2 +α3 +α4 +α5) +α3,
(α1 + α2 + α3 + α4 + α5 + α6) + (α3 + α4), (α1 + α2 + α3 + α4 + α5 + α6) + (α2 + α3), and

4



(α1 + α2 + α3 + α4 + α5) + (α2 + α3 + α4). In other words, we get six SOS2(A6)’s. One can check
easily that they satisfy the property from Subsection 1.3.

In general, if a finite projective plane of order n exists, then we can consider its incidence matrix,
take the differences between the first (or any fixed row) and all other rows. We get n(n + 1)
elements of SOSn(An(n+1) which satisfy the property from Subsection 1.3. Thus, in this case,
µn(An(n+1)) ≥ n(n + 1). And we conclude that if µn(An(n+1) < n(n + 1), then there is no finite
projective plane of order n.

We can formulate the following

Question 2.1. For n not equal to a prime-power, is it true that µn(An(n+1) < n(n+ 1)?

As mentioned already, in this paper we attempt to better understand the sequences µk(R) not
just for the root systems of type A, but in general. Much remains to be done to understand
these sequences for any root system. One could attempt to tackle this problem not just from a
combinatorial perspective, but also from a geometric perspective, making use of the fact (cf. [Sch75,
pg. 55]) that strong-orthogonality is a condition implying the commutativity of Cayley transforms
between Cartan subalgebras. But, that is beyond the scope of the current paper.

3. Proof of Theorem 1.2

Fix k ∈ N. We aim to prove that for sufficiently large ` ∈ N we have µk(A`) =
⌊
`−(k−1)

k

⌋
. Note

that (cf. Proposition 1.1) if k > b `+1
2 c, then µk(A`) = 0. We will therefore assume throughout this

subsection that k ≤ b `+1
2 c.

Let us first observe that roots of A` are εi − εj , with 1 ≤ i 6= j ≤ ` + 1, and where (εi) is the

canonical basis of R`. A natural basis of roots of A` is given by αi = εi − εi+1 (i = 1, 2, . . . , `).
Next, observe that two roots εi−εj and εp−εq are strongly orthogonal if and only if i, j /∈ {p, q}

(and, of course, i 6= j and p 6= q or else εi − εj and εp − εq would not be roots in the first place).

Fix an element Γ1 ∈ SOSk(A`). Then the sum |Γ1| of elements Γ1 is a vector from Z`+1 with
exactly 2k coordinates that are nonzero, where k of them are equal to 1 and the other k equal to
−1.

After permutation, we can assume without loss of generality that the elements of Γ1 are the
following α1 +α2 + . . .+α2k−1, α2 +α3 + . . .+α2k−2, α3 +α4 + . . .+α2k−3, · · · , αk−1 +αk +αk+1,

and αk. This implies that the sum |Γ1| is equal to
∑k

i=1 εi −
∑2k

i=k+1 εi.
Suppose that there exists Γ2 ∈ SOSk(A`) such that property (S) from subsection 1.3 holds for

Γ1 and Γ2. Denote by i1 < i2 < . . . < i2k−1 < i2k the ordered non-zero coordinates of |Γ2| ∈ Z`+1.
Again, k of them are equal to 1 and the other k equal to −1.

Property (S) for Γ1 and Γ2 implies that the two vectors |Γ1| and |Γ2| overlap on exactly k
non-zero coordinates (and are both zero on the same ` + 1 − 3k zero coordinates). Therefore,
i1, i2, . . . , ik ∈ {1, 2, . . . , 2k − 1, 2k} and ik+1 > 2k. Without loss of generality, by permuting
coordinates if necessary, we can assume that ik+1 = 2k + 1, ik+2 = 2k + 2, . . . , i2k = 3k.

Suppose now that there exists, in addition, Γ3 ∈ SOSk(A`) such that property (S) from subsec-
tion 1.3 holds for Γ1,Γ2,Γ2. Denote by j1 < j2 < . . . < j2k−1 < j2k the ordered non-zero coordinates
of |Γ3| ∈ Z`+1. Then, again we have j1, j2, . . . , jk ∈ {1, 2, . . . , 2k − 1, 2k} and jk+1 > 2k.

There are obviously two possibilities:

(i) All the three vectors |Γ1|, |Γ2|, |Γ3| overlap on the same k coordinates.
(ii) Not all the three vectors |Γ1|, |Γ2|, |Γ3| overlap on the same k coordinates.

We will now prove that in case (ii), for ` large enough (recall that we have fixed k), the maximal
number of elements of SOSk(A`) satisfying (S) has an absolute upper bound that does not depend
on `.
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Suppose that (ii) holds. Since not all the three vectors |Γ1|, |Γ2|, |Γ3| overlap on the same k
coordinates, but each pair of such vectors overlaps on exactly k coordinates, we infer that at least
k + 1 non-zero coordinates of Γ3 must lies on the first 3k coordinates. The same can be inferred
about any element of SOSk(A`) that we would consider to construct a sequence of Γi’s as in
subsection 1.3.

But, in order to ensure that (S) is satisfied, no two elements Γi should overlap on more than
k non-zero coordinates. This yields an upper bound for such a sequence {Γi} since we have to
choose k + 1 entries from the first 3k coordinate and there should be no overlap on more than k
coordinates for any two |Γi|′s. The crude estimate is that in this case the sequence {Γi} contains

at most
(

3k
k+1

)
+ 2 elements. In reality this upper bound is much smaller, but we do not need that

fact in the proof of Theorem 1.2.
It remains that, in order to construct µk(A`) for sufficiently large `, we only need to deal with

the situations of case (i) above. In that case, we can immediately check that µk(A`) =
⌊
`−(k−1)

k

⌋
,

which we can get explicitly from the sequence of Γi’s with Γp consisting of the following k roots:

α1 + α2 + . . .+ αpk,
α2 + α3 + . . .+ αpk−1,
. . .
αk−1 + αk + . . .+ α(p−1)k+1 + α(p−1)k+2,
αk + αk+1 + . . .+ α(p−1)k+1.

For illustration, we have written below a maximal sequence in a matrix format, with rows
representing |Γi|’s. Here we have taken k = 3 and ` is sufficiently large (congruent to 1 mod 3, but
the last restriction in not essential):

1 1 1 −1 −1 −1 0 0 0 0 0 0 ... 0 0 0 0
1 1 1 0 0 0 −1 −1 −1 0 0 0 ... 0 0 0 0
1 1 1 0 0 0 0 0 0 −1 −1 −1 ... 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 1 1 0 0 0 0 0 0 0 0 0 ... −1 −1 −1 0

 .

This completes the proof of Theorem 1.2.
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