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Abstract. We study the so-called looping case of Mozes’s game of numbers, which concerns the
(finite) orbits in the reflection representation of affine Weyl groups situated on the boundary of the
Tits cone. We give a simple proof that all configurations in the orbit are obtainable from each other
by playing the numbers game, and give a strategy for going from one configuration to another. This
strategy gives rise to a partition of the finite Weyl group into finitely many graded posets, one for
each extending vertex of the associated extended Dynkin diagram. These posets are selfdual and
mutually isomorphic, and their Hasse diagrams are dual to the triangulation of the unit hypercube
by reflecting hyperplanes. Unlike the weak and Bruhat orders, the top degree is cubic in the number
of vertices of the graph. We explicitly compute the rank generating function of the poset.
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1. Introduction

1.1. The numbers game. Mozes’s game of numbers [Moz90], which originated from (and general-
izes) a 1986 IMO problem, has been widely studied (cf. [Pro84, Pro99, DE08, Eri92, Eri93, Eri94a,
Eri94b, Eri95, Eri96, Wil03a, Wil03b]), and yields useful algorithms for computing with the root
systems and reflection representations of Coxeter groups (see [BB05, §4.3] for a brief summary).

We briefly recall the numbers game. Consider a Coxeter group W with generators si, i ∈ I, and
relations (sisj)

nij = 1, for nij = nji ∈ Z≥1 t {∞} (nii = 1 for all i, and nij ≥ 2 for i 6= j). We
associate to this an unoriented graph Γ with no loops and no multiple edges, with vertex set I, such
that two vertices i, j are adjacent if nij ≥ 3. Consider also a choice of Cartan matrix C = (cij) such
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that cii = 2 for all i, cij = 0 whenever i and j are not adjacent, and in the case i, j are adjacent,
cij , cji < 0 and either cijcji = 4 cos2( π

nij
) (when nij is finite), or cijcji ≥ 4 (when nij =∞).

The configurations of the game consist of vectors RI , considered as labelings of the vertices of
the graph Γ. The moves of the game are as follows: for any vector v = (vi)i∈I ∈ RI and any vertex
i ∈ I such that vi < 0, one may perform the following move, called firing the vertex i: v is replaced
by the new configuration si(v), defined by

(1.1) (si(v))j =


−vi, if j = i,

vj − cijvi, if j is adjacent to i,

vj , otherwise.

The entries vi of the vector v are called amplitudes. The game terminates if all the amplitudes are
nonnegative. Let us emphasize that only vertices with negative amplitudes may be fired.

The following summarizes some basic known results. Here · denotes the usual dot product in RI .
In the case where the Coxeter group is an affine Weyl group and C = C0 is the standard integral
Cartan matrix, the vector δ ∈ ZI≥1 is a generator of the kernel of the Cartan form, expressed in the
basis of simple roots; the precise definition is recalled in Section 2.

Theorem 1.2. (i) [Moz90, Eri96] If the numbers game terminates, then it must terminate in
the same number of moves and at the same configuration regardless of how it is played.

(ii) In the finite Coxeter group case, the numbers game must terminate.
(iii) [Eri94a] In the affine case with C = DC0D

−1 for D a diagonal matrix with positive diagonal
entries,1 the numbers game terminates if and only if δ · (Dv) > 0.

(iv) [Eri94a] Whenever the numbers game does not terminate, it reaches infinitely many distinct
configurations, except for the affine case with C = DC0D

−1 and δ · (Dv) = 0 (but v 6= 0),
in which case only finitely many configurations are reached (i.e., the game “loops”).

In particular, we will be concerned here with the looping case. From now on, we assume therefore
that W is an affine Weyl group. Let Γ be the underlying undirected graph of the Dynkin diagram
of W , obtained by forgetting edge directions and multiplicities. Let Γ0 ⊂ Γ be a subgraph obtained
by removing a vertex, which is the underlying undirected graph of a finite Dynkin diagram from
which the Dynkin diagram of W is obtained by adjoining an extending vertex. Let W0 ⊆W be the
finite Weyl group associated to Γ0, generated by si for i ranging over the vertices of Γ0.

We explain briefly how our results relate to standard constructions in the theory of Coxeter
groups. The configuration space RI is the reflection representation of the Coxeter group W . The
subset of RI where the numbers game terminates is called the Tits cone. The Tits cone is naturally
divided into simplicial cones, with the maximal cones labeled by the elements of W (see [BB05,
Sections 4.3 and 4.9]). Starting with a point in the interior of one of these maximal cones, the cones
we travel through form a descending chain in the weak order (whose definition we recall in §6); the
restriction of firing only negative amplitudes means that we only move downward. So results (i)
and (ii), in part, say that weak order is graded and has a unique minimal element.

Our results study the affine case when the initial vector is not within the Tits cone, but rather
at its boundary. In the affine case, the boundary of the Tits cone is a hyperplane, divided into
finitely many simplicial cones. These cones are indexed by the elements of W0. However, our
problems do not reduce to the numbers game on W0, but instead reveal several new and interesting
combinatorial structures. That is, some combinatorics of W appear inside W0, in a sense we will
explain.

1In all affine types other than Ãn, since the graph Γ is acyclic, C is automatically of this form.
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1.2. Motivation and results. The original motivation of this paper was the following question:
in the looping case, can one always return to the initial configuration? This was asserted to be
true in [Eri94a],2 but a proof was not provided. Our first goal is to provide a simple proof in the
affirmative. In fact, we prove more: we give in §3 a strategy for going from any configuration v
to any element of its Weyl orbit in a number of moves cubic in the number of vertices, and our
strategy is optimal in certain cases.

Following the strategy leads to a graded selfdual poset of obtainable configurations, which we
define in §4. To define this, we fix a finite Dynkin subdiagram whose associated extended Dynkin
diagram is the original graph. Then, the poset begins with a configuration whose restriction to a
fixed finite Dynkin subdiagram is dominant, and ends with one whose restriction is antidominant.
Since the choices of finite Dynkin subdiagram correspond to the choices of extending vertices, this
decomposes the finite Weyl group associated to our graph canonically into disjoint copies of the
aforementioned poset, one for each extending vertex. As we will see, this poset does not closely
resemble a poset associated to the finite Weyl group: it has cubic degree in the number of vertices,
unlike the weak or Bruhat order posets for the finite Weyl group, which have quadratic degree. In
the remainder of the paper, we study this poset.

In §5 we show that following our strategy on a looping configuration is equivalent to arbitrarily
playing the numbers game on a modified configuration for which the numbers game terminates.
The main result here, Proposition 5.1, is a key technical ingredient in the remaining results.

In §6 we identify the aforementioned poset with an interval under the (left) weak order in the
affine Weyl group. Moreover, we show in §7 that the Hasse diagram of the poset coincides with the
dual of the triangulation of the unit hypercube in the reflection representation of the affine Weyl
group. This triangulation has been studied in many places, notably recently in [LP07] in type A.

Finally, in §8, we explicitly compute the rank generating function3 of the poset: this is a polyno-
mial whose degree bounds the number of moves required by the main part of our aforementioned
strategy for going from one looping configuration to another. In particular, this proves that the top
degree is cubic in the number of vertices. The coefficients in each degree say how many different
configurations can be obtained by following our strategy, starting with the initial configuration
in lowest degree of the poset, for a number of moves equal to the degree. Going from the initial
configuration to the final one gives rise to a canonical involution of the extended Dynkin diagram
which we also compute. In §8.3, we give a combinatorial interpretation and proof of this formula in
the type A cases (our proof in general type relies on the formulas for the rank generating functions
of W and W0).

Evaluating the rank generating function (which is a polynomial) at 1 in two ways yields a curious
identity (which was unknown to us): Let mi be the Coxeter exponents of W0. Let I be the vertex
set of Γ. Then,

(1.3)
∏
i

(mi(mi + 1)) = #(extending vertices of Γ) ·
∏
i∈I

L(ti),

where the elements ti ∈ W are those that take the dominant chamber of H := {v ∈ RI | δ · v = 1}
(i.e., the locus where all coordinates are nonnegative) to its translate by ωi − δiωj , where ωi is the
i-th fundamental coweight (which is the i-th basis vector of our configuration space RI), and L(ti)
is the length of ti, i.e., the minimum number of simple reflections whose product is ti.

2Also, there it was asserted that there is a way to play the numbers game that passes through all configurations
in the Weyl orbit of the vector v exactly once (i.e., that a Hamiltonian cycle exists in the directed graph whose
vertices are this Weyl orbit and directed edges are moves of the numbers game). We do not have either a proof or
counterexample to this assertion.

3The rank generating function is also known as the Hilbert series (which is a polynomial here since the poset is
finite).
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2. Preliminaries on affine Weyl groups

2.1. Recollections. For a reference on the material in this subsection, see, e.g., [Bou02, §VI.4]. By
a Dynkin graph, we mean the underlying undirected graph of a Dynkin diagram, without multiple
edges. That is, in a Dynkin graph, any two adjacent vertices are connected by a single undirected
edge. Let us make the same definition for extended Dynkin graphs.

In this note, we will be concerned with the numbers game when Γ is an extended Dynkin graph
with vertex set I (for |I| ≥ 2), and C is the standard integral Cartan matrix associated to the
extended Dynkin diagram (see Remark 2.2 below). Then, the Coxeter group W is the affine Weyl
group associated to the extended Dynkin diagram.

We will make use of the root systems associated to Dynkin and extended Dynkin graphs. Let ∆
and ∆+ be the sets of roots and positive roots, respectively. We will view ∆ and ∆+ ⊂ ZI in the
basis of simple roots. Then, the dot product between roots and configuration vectors (viewed as
coweights) is the canonical pairing.

To be precise, by roots we mean what are sometimes called real roots, i.e., the images of the
simple roots under the Coxeter group action dual to the action on the space of configurations:
siα = α − 〈α, αi〉αi, where αi ∈ ∆+ ⊂ ZI is the i-th simple root and 〈 , 〉 is the Cartan form,
〈αi, αj〉 = cij .

Recall that, for a (finite) Dynkin diagram, one can form the associated extended Dynkin diagram
by adjoining a new vertex corresponding to the negative of the maximal root β: in other words, β
is the unique positive root such that 〈β, αj〉 ≥ 0 for all simple roots αj . Conversely, let us call a
vertex of an extended Dynkin diagram extending if its removal results in a Dynkin diagram whose

extended Dynkin diagram is the original diagram. For example, all vertices of a type Ãn extended

Dynkin diagram are extending, whereas the four external vertices of a type D̃n extended Dynkin
diagram are extending.

Passing to the underlying extended Dynkin graph Γ, call a vertex extending if it was an extending
vertex of the extended Dynkin diagram.

Finally, we will make use of the element δ ∈ ZI+, uniquely given so that δi = 1 at all extending

vertices of the graph, and 〈δ, α〉 = 0 for all α ∈ ∆. We write δ⊥ ⊆ RI for the space of configurations
orthogonal to δ; this is the boundary of the Tits cone.

We emphasize that ∆ is the set of roots for the affine Weyl group. On the occasion that we need
to refer to the root system of the associated finite Coxeter group, we write ∆0; then ∆0

+ will denote
the subset of positive roots in ∆0.

2.2. Connection to the numbers game. The following proposition explains the connection
between roots and the numbers game.

Proposition 2.1. Start with any configuration v and perform a valid sequence of firing moves. If
b is an amplitude (necessarily negative) which is fired at some point then there is a positive root β
such that β · v = b.

Specifically, if the sequence is i1, . . . , im, then the word sim · · · si1 is reduced, and the j-th ampli-
tude fired (at vertex ij) is (si1si2 · · · sij−1α

ij ) · v.
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Proof. The final assertion, that the j-th amplitude fired is (si1 · · · sij−1α
ij ) · v, is obvious, since

this equals αij · (sij−1 · · · si1(v)). Moreover, if si1 · · · sim is reduced, then so is si1 · · · sij , and hence

si1 · · · sij−1α
ij is positive. Thus, it suffices to show that si1 · · · sim is reduced.

Suppose, for sake of contradiction, that this word is not reduced. Let ` be the first index
such that si1si2 · · · si` is not reduced. Then there is some k < ` such that si1si2 · · · sik−1

αik =

−si1si2 · · · si`−1
αi` . But then, the k-th amplitude fired is negative the `-th amplitude fired, which

is impossible. Thus we have a contradiction. �

Remark 2.2. Although it is convenient to work with the standard integral C = C0 as above, this
is not essential. If C = DC0D

−1, for D a diagonal matrix with positive entries, then one has a
standard equivalence between the numbers game using C0 and the numbers game using C, by the
map on configurations v 7→ D−1v. In particular, the looping configurations for the numbers game
using C are those v 6= 0 such that δ · (Dv) = 0. This allows one to transplant the results of this
paper to the general looping case.

3. Strong looping of the numbers game

In this section, we prove and generalize the following:

Theorem 3.1. Whenever the numbers game loops, one can always return to the initial configura-
tion.

The initial configuration v is looping if and only if δ · v = 0 and v 6= 0. The theorem can now be
re-expressed as: if δ · v = 0, then for every element w of the Coxeter group of the graph, one can
go from v to w(v) by playing the numbers game.

As in the introduction, fix a choice of Γ0 ⊂ Γ obtained by removing an extending vertex of Γ.
We emphasize that from now on, all results stated are valid also if we made any other choice of Γ0

from the beginning. Following the introduction, let W0 be the Coxeter group associated to Γ0 and
the corresponding restriction of C, which is a finite Weyl group associated to the affine Weyl group
W .

Recall that the inclusion of W0 into W has a standard section W →W0 (a group homomorphism),
and that the action of W on the hyperplane δ⊥ factors through W0; therefore, when v ∈ δ⊥ and
w ∈ W0, we will feel free to write w(v). Note that, as a consequence, whenever v ∈ δ⊥, the orbits
W (v) and W0(v) are identical.

Because we have chosen Γ0 in Γ, we have a canonical isomorphism between δ⊥ and the reflection
representation of W0; namely, take a configuration of amplitudes on Γ, lying in δ⊥, and restrict
them to Γ0 to obtain a configuration on Γ0.

The reflecting hyperplanes divide δ⊥ into finitely many chambers, indexed by W0. We now
explain some preliminary reductions, followed by our primary technical result (Theorem 3.3):

Proposition 3.2. Let v lie in the interior of a chamber C of δ⊥. Let v′ be a point in the W0 orbit
of v, say v′ = w(v), and let C ′ be the chamber in which v′ lies. Suppose that we have a sequence
of firings which takes v to v′. Let x be another point in C, possibly on the boundary of C. Then,
starting with x, there is a subsequence of the preceding sequence of firings (in the case of v) which
is legal (beginning with x, only vertices of negative amplitude are fired), and which takes x to w(x).

Proof. Let the sequence of firings be si1 , si2 , . . . , si` , with the corresponding sequence of chambers
C1 = si1(C), C2 = si2si1(C), . . . , C` = si` · · · si1(C). Define xk = siksij−1 · · · si1(x). Note that xk is
in Ck. We show that either xk can be obtained from xk−1 by a legal firing, or xk = xk−1. Indeed,
since xk−1 is in the chamber Ck−1, the amplitude of ik must be nonpositive. If it is negative, we
may fire ik; if it is zero, then xk−1 is fixed by firing ik, so xk−1 = xk.

Thus, we can travel through the xk’s by performing the firing sik when it is legal and omitting
it when it is not (and hence ik has zero amplitude). We finally arrive at x` = w(x). �
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Thus, it is enough to show that, for any two chambers C and C ′, there is a point in the interior
of C which can by taken to C ′ by a legal firing sequence. Let ρ be the unique vector of δ⊥ which is
1 on every vertex of Γ0. If i is any extending vertex of Γ, we write ρi for the analogous construction
with respect to that vertex. Our preferred vector in the interior of a given chamber will be the
unique vector of the form w(ρ) for w ∈W0. We remark that, since all ρi are in the same Weyl orbit,
this preferred point is also the unique vector of the form w′(ρi) for any other extending vertex i.

Furthermore, one can always play the numbers game on Γ0 until all the amplitudes on Γ0 are
nonnegative; this will carry one into the dominant Weyl chamber for W0. Similarly, by playing
the numbers game in reverse, one sees that every configuration is obtainable from one in the
antidominant Weyl chamber for W0.

Thus, we will focus on how to get to the antidominant chamber (and, equivalently, how to get
from the dominant chamber). More precisely, we will focus on how to get to a chamber which
is antidominant for some choice of extending vertex, not necessarily the original one we fixed for
reference purposes. By playing the numbers game in reverse, this also shows how to get to a fixed
chamber from a chamber which is dominant for some choice of extending vertex.

It turns out that the optimal strategy to get from a point in C of the form w(ρ) (for w ∈ W0)
to an antidominant chamber for some extending vertex is to only fire vertices whose amplitude is
less than −1:

Theorem 3.3. For every w ∈W0, starting with w(ρ) and playing the numbers game by arbitrarily
firing vertices of amplitude less than −1, one obtains −ρi for some extending vertex i ∈ Γ. Regard-
less which moves are chosen, the total number of moves is the same, as is the vertex i. This is the
minimum number of moves required to get from w(ρ) to a configuration of the form −ρi′, and all
minimum-length firing sequences are of this form (with i = i′).

Remark 3.4. One can deduce from the proof below that, moreover, the score vector is the same
regardless of the moves chosen: this means the configuration vector in RI which records, at each
vertex, the sum of negative all the amplitudes fired at that vertex in the course of playing the game.

Using Theorem 3.3, we make the following definition: for every extending vertex i, let ι(i) be
the extending vertex such that, starting at ρi and firing vertices of amplitude less than −1, one
arrives at −ρι(i). Note that starting at ρι(i) and firing vertices of amplitude less than −1 reverses
this path, ending at −ρi. Thus, ι is an involution.

To prove the theorem, we will use two lemmas:

Lemma 3.5. Let σ ∈ ZI have the following properties:

(i) σ is in δ⊥.
(ii) For each i ∈ I, σi ≥ −1.

(iii) For every root α ∈ ∆, α · σ 6= 0.

Then σ = −ρi for some extending vertex i.

Note in particular that, for every w ∈W0, the vector w(ρ) satisfies (i) and (iii).

Figure 1 demonstrates Lemma 3.5 for the group Ã2. The dots depict the lattice ZI ∩δ⊥, the grey
triangle is the region of δ⊥ satisfying condition (ii), and the three solid lines are the hyperplanes
on which (iii) does not hold. Note that there are only three dots which are in the triangle and not
on the solid lines; these are the configurations of the form −ρi, for i an extending vertices of Γ.

Proof of Lemma 3.5. Recall that ∆0 denotes the root system of W0. Let I0 denote the set of vertices
of the associated subgraph Γ0 ⊂ Γ, and let j be the single (extending) vertex in I \ I0. The simple
roots of ∆ are the simple roots αi for i ∈ I0, together with αj := δ−βlong, where βlong is the longest
root in ∆0. Using (i) and (ii), we deduce that γ · σ ≥ −1 for γ in R := {αi}i∈I0 ∪ {−βlong}.
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Figure 1. Lemma 3.5

Taking inner product with σ yields a linear function on ∆0, which, by condition (iii), is not zero
on any root. Let N be the subset of ∆0 whose inner product with σ is negative; so N = −w(∆0

+)

for some w ∈W0. For any γ ∈ N , γ = −
∑

i∈I0 biw(αi) for some nonnegative integers bi, and then

γ · σ ≤ −
∑
bi. If γ is an element of N which is not of the form −w(αi) then we deduce that

γ · σ < −1, and thus γ /∈ R.
Combining the observations of the last two paragraphs, we see that R ⊆ w(∆0

+)∪{−w(αi)}i∈I0 .

Suppose, for the sake of contradiction, that −w(αi) /∈ R for some i ∈ I0. Then w−1(R) lies in the
closed half-space whose boundary is spanned by the simple roots other than αi. But, there is a
positive linear combination of all elements of R which is zero. This would imply that R lies in the
boundary of this closed half-space, which is impossible since the real span of R is all of RI .

We deduce that R ⊃ {−w(αi)}i∈I0 . So β ·σ is −1 for all but one element β ∈ R. Viewing σ as an
element of RI , this says that all but one coordinate is −1. Let that one coordinate be i. Consider
the simple roots of W associated to I \ {i}; modulo δ, these roots form a simple root system for
W0 (namely, {−w(αi)}i∈I0). So, i is an extending vertex and σ = −ρi. �

Lemma 3.6. Starting with any configuration v, suppose that is possible to fire r vertices i1, i2, . . . , ir
(counted with multiplicity) of amplitude less than −1 until there are none left. Consider any other
sequence of firing s vertices of amplitude less than −1. Then s ≤ r and this sequence can be
extended to a sequence of r firings of vertices of amplitude less than −1 which terminates at the
same configuration. Moreover, the Weyl group element sirsir−1 · · · si1 ∈ W is independent of the
choice of firing sequence.

Proof of Lemma 3.6. This is similar to the proof of strong convergence in the numbers game, so
we will be brief. Our proof is by induction on r. Notice that, if vk < −1 and v` < −1 then the
` coordinate will still be less than −1 after the k-vertex is fired. Thus, if r = 1 then only one
coordinate of v is less than −1 and the claim is obvious.

For r ≥ 2, let v →k σ → · · · → ζ be our sequence of length r, beginning by firing k, and let
v →` τ → · · · → ζ ′ be the sequence of length s, beginning by firing `. Then vk and v` are both
less than −1. Consider alternately firing k and ` until both coordinates are ≥ −1. (If this never
occurs, then no path from v can terminate.) Let π be the configuration when both coordinates
become ≥ −1. We claim that (i) this configuration does not depend on whether we fire k or ` first,
(ii) the two paths v → σ → · · · → π and v → τ → · · · → π have the same length t = nk`. Note
first that, by the Coxeter relations, the alternating products sks`sk · · · ∈ W and s`sks` · · · ∈ W ,

7



each of length nk`, are equal, and take (vk, v`) to (−vk,−v`) if nk` is even, and to (−v`,−vk) if nk`
is odd. Thus, to prove (i) and (ii), it suffices to show that, if we alternately fire vertices k and `
exactly nk` times, beginning with either vertex, then only vertices of amplitude less than −1 will
be fired. First, since the configurations (−vk,−v`) or (−v`,−vk) are dominant restricted to the
subgraph on vertices k and `, this must be the result of playing the usual numbers game on this
subgraph. By Proposition 2.1, all the amplitudes that are fired are of the form α · (vk, v`) where α
is a positive root for the restriction of the diagram to vertices k and `. Therefore, α is a vector with
nonnegative integral entries, implying that the dot product is indeed less than −1. This proves the
desired results.

By induction, we can extend σ → · · · → π to a path σ → · · · → π → · · · → ζ of length r − 1,
firing only vertices of amplitude less than −1. Tacking the second part of this path onto the path
τ → · · · → π, we obtain a path τ → · · · → ζ of length r − 1, firing only vertices of amplitude
less than −1. Using induction again, we can complete our previous sequence of length s − 1,
τ → · · · → ζ ′, to another path τ → · · · → ζ ′ → · · · → ζ of length r − 1, firing only vertices of
amplitude less than −1. Tacking v →` τ on the beginning of this path, we obtain an extension of
our path v →` τ → · · · → ζ ′ to a path of length r which terminates at the same configuration ζ as
our original path v →k σ → · · · → ζ, firing only vertices of amplitude less than −1. This proves
the desired result.

It remains to show that the product of simple reflections corresponding to the two firing sequences
of length r from v to ζ are the same element of W . By induction, the products of the reflections for
the parts π → · · · → ζ are the same, so it suffices to show that the products of the reflections for
the parts σ → · · · → π are the same. But these are both alternating products of sk and s` of length
nij , so they are the same element of W (as also observed above). This completes the proof. �

Note that there is nothing in the above lemma that requires the number −1: the same is true
for any negative number, and neither the number nor v need be integral.

Proof of Theorem 3.3. We begin by showing that there is a path from ρ to some −ρi by firing only
vertices of amplitude less than −1. Start at ρ and fire vertices of amplitude less than −1 in any
manner. Since the W orbit of ρ is finite, either we will reach a configuration with no vertices of
amplitude less than −1, or we will repeat a configuration. In the former case, by Lemma 3.5, we
are done. In the latter case, we have a path of the form ρ → · · · → σ → · · · → σ. Reversing this
path and negating all the configurations, we obtain a path −σ → · · · → −σ → · · · → −ρ which
only fires vertices of amplitude less than −1. So we have two paths of different lengths from −σ to
−ρ, contradicting Lemma 3.6. Note that we now have enough to prove Theorem 3.1.

We continue with the proof of Theorem 3.3. Let σ be of the form w(ρ) for w ∈ W0. Because
the numbers game for W0 terminates, it is possible to get from σ to ρ by firing only vertices of
negative amplitude. By the result we just established, it is possible to get from σ to some −ρi by
firing only vertices of negative amplitude. Let the length of a shortest path from σ to some −ρi be
m; we must show that this path involves only firing vertices of amplitude less than −1. Our proof
is by induction on m; the base case m = 0 is obvious. If σ is of the form −ρi, we are done. If not
then, by Lemma 3.5, σk < −1 for some k.

Let the first step of our path go from σ → σ′, firing `. The rest of the path, from σ′ to −ρi, must
be a shortest path from σ′ to any −ρi′ and hence, by induction, must only involve firing vertices of
amplitude less than −1. Let σ` = a. We need to show that a < −1.

Starting at σ, alternately fire k and ` until the k and ` coordinates are both positive. The resulting
configuration, τ , is the same whether we fire k or ` first, and the length of the resulting path from
σ to τ is nk` in either case (see the proof of Lemma 3.6). Enroute from σ′ to τ , all the vertices fired
are of amplitude < −1. Using Lemma 3.6, we can fire m−nk` more vertices of amplitude less than
−1 to get from τ to −ρi. Now, consider the path σ → · · · → τ ′ → τ → · · · → (−ρi) which starts by
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firing k. Then the vertex which is fired when going from τ ′ to τ has amplitude a. The path from
τ ′ to −ρi must be shortest possible to any −ρi′ (otherwise there would be a shorter path from σ to

some −ρi′). So, by induction, every vertex which is fired in this path has amplitude less than −1.
In particular, a < −1, as desired. �

Remark 3.7. One may explicitly determine the involution ι appearing above:

Proposition 3.8. The involution ι is the restriction of a unique automorphism of Γ. It is trivial for
exactly the graphs

(3.9) Ã2m, B̃4m−1, B̃4m, D̃4m, D̃4m+1, Ẽ6, Ẽ8, F̃4, G̃2, m ≥ 1.

For graphs Ã2m−1, ι is the involution sending every vertex in Γ to its antipodal vertex. For type

D̃4m+2, D̃4m+3, ι interchanges extending vertices which are adjacent to a common vertex. For types

B̃4m+1, B̃4m+2, C̃m+1, Ẽ7, ι is the restriction of the unique nontrivial automorphism of the graph.

We will sketch a proof of the proposition in Remark 5.6.

4. The resulting poset

At this point, we have proved that, for any point v in the boundary of the Tits cone, it is possible
to get from v to any other point in the W0 orbit of v. Moreover, we have described the most efficient
way to get to an antidominant chamber (for some choice of extending vertex). Theorem 3.3 suggests
defining a directed graph structure as follows: The vertices are elements of W0(ρ), and there is an
edge from u to v if one can go from u to v by firing a vertex of amplitude less than −1. Our
Theorem 3.3 states this graph is acyclic and that each connected component contains a unique
source, ρi, and a unique sink, −ρι(i). If we take the transitive closure of this graph, we will obtain
a graded poset, of which this graph is the Hasse diagram. We are thus naturally lead to partition
W0(ρ) (and hence also W0) into a collection of graded posets, one for each extending vertex of Γ.
Write P i for the poset of configurations obtainable from ρi by firing vertices of amplitude less than
−1. We will spend the rest of this paper studying these posets.

By Theorem 3.3,

(4.1) W (ρ) = {w(ρ) : w ∈W0} =
⊔

i an extending vertex

P i.

Furthermore, each P i is a graded poset: this means that each element v ∈ P i has a well-defined
degree, given by the number of firings of vertices with amplitude less than −1 needed to go from
ρi to v. They are also self-dual, which means that the poset is isomorphic to the one where the
ordering is reversed.

The P i are all isomorphic posets. Since W0 ⊂ W acts freely on ρ = ρj , we may view (4.1) as a
decomposition of W0 itself into isomorphic graded posets, W0 =

⊔
iW

i
0. Moreover, the isomorphism

W j
0
∼→W i

0 is nothing but w 7→ riw, where ri ∈W0 is the element such that riρ = ρi.
We remark that (4.1) is quite canonical. In particular, it does not depend on the choice of

the dominant vector ρ: any element u whose restriction to Γ0 is in the interior of the dominant
Weyl chamber (i.e., all amplitudes are positive) gives rise to the same decomposition (4.1), except
that P i are now defined as the graded posets of configurations obtainable along a minimal-length
firing sequence from ri(u) to w(u), where w ∈ W satisfies w(ρ) = −ρι(j). When we pass to the
decomposition of W0 itself into isomorphic graded posets, the result is independent of u.

In the next sections, we will identify each Pi with an interval under the (left) weak order in
the affine Weyl group, and equivalently with the dual of the triangulation of a unit hypercube
in the reflection representation. The key technical ingredient, which comes first, is to compare
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playing the numbers game beginning with ρi to the numbers game on a modified configuration
which terminates.

5. Relating the numbers game at the boundary to the interior of the Tits cone

From now on, fix an extending vertex j, so ρ = ρj. The main result of this section is to
relate the procedure of starting at ρj and firing only amplitudes less than −1 to the procedure of
starting within the Tits cone at certain points and playing the numbers game arbitrarily.

Let I0 := I \ {j}. Let βlong ∈ (∆0)+ be the longest root of (∆0)+, and let sβlong ∈ W0 be the
corresponding reflection. Let L be the length function on W and let b be a real number in the
interval (1, 1 + 1

L(sβlong )−1
). With these definitions, let ub = ρj + bωj , where ωj is the configuration

which is 1 at the vertex j and zero elsewhere.
The main result of this section is

Proposition 5.1. A sequence of vertices i1, i2, . . . is a valid firing sequence for the numbers game
starting with ub if and only if it is a firing sequence of amplitudes less than −1 starting with
ρj. The final configuration reached under a maximal such firing sequence (starting with ub) is

(b− 1)ρι(j) + bωι(j) for the involution ι introduced above.

Note that the proposition essentially requires b to be as specified. For values b < 1, the set of
firing sequences starting with ρj of amplitudes less than −1 is a proper subset of the set of valid
firing sequences starting with ub; for values b ≥ 1 + 1

L(sβlong )−1
, the set of firing sequences starting

with ρj of amplitudes less than −1 properly contains the set of valid firing sequences starting with
ub. (We remark that the proposition still holds if b equals 1, but since this places ub on the boundary
of its Weyl chamber, we avoid this possibility.)

The proof of the proposition relies on the following basic lemma. For each vertex k ∈ I0, let
Tk : RI → RI be the “translation” element of the form

(5.2) Tk(v) = v + (δ · v)(ωk − δiωj).
Let P∨0 be the coweight lattice for ∆0 (with basis the fundamental coweights ωi, i ∈ I0) and let
Q∨0 := 〈α∨ : α ∈ ∆0〉 ⊂ P∨0 be the coroot sublattice. In the basis of fundamental coweights,
P∨0 = ZI0 ⊇ 〈α∨ : α ∈ ∆0〉, where (α∨)i = 〈α, αi〉 for all i ∈ I0.

Lemma 5.3. For every vertex k ∈ I0, there is a unique element tk ∈ W whose action on RI is
of the form tk = Tk ◦ γk, where γk : RI → RI is a permutation of coordinates corresponding to
an automorphism of the graph Γ. The map ωk 7→ γk induces a injective homomorphism from the
group4 P∨0 /Q

∨
0 into Aut(Γ).

Proof. Fix b > 0 and consider the hyperplane Hb := {v ∈ RI | δ · v = b}, fixed under W . It suffices
to show that the lemma holds restricted to Hb. Note that the triangulation of Hb by its intersection
with the Weyl chambers has the translational symmetry Tk|Hb . Thus, there must exist a unique
element tk ∈W such that tk takes the dominant Weyl chamber (i.e., the one whose amplitudes are
all nonnegative) to its translate under Tk. Therefore, T−1k ◦ tk must be an isometry of the dominant

Weyl chamber. Thus, T−1k ◦ tk is induced by an automorphism γk ∈ Γ.
To see that this induces a homomorphism ψ : P∨0 → Aut(Γ), we need to show that the γk all

commute with each other. When Γ is not of type A or D, this is immediate since Aut(Γ) is abelian.
In the case of type A, a straightforward computation shows that, when k is adjacent to j, then
γk is a rotation of the diagram Γ (moving each vertex to an adjacent one), and all other γ` can
be obtained as products of conjugates of this one. Therefore, the images of all the γ` generate the
abelian normal subgroup Z/n < D2n = Aut(Γ), in this case. In the case of type D, the image of P0

4The group P∨0 /Q∨0 is called the fundamental group of the root system ∆0, and it is a standard object.
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is a 4-element subgroup of D4 and is hence abelian (we can also compute explicitly that the image
is abelian, like in type A).

Finally, we need to show that the kernel of ψ is Q∨0 . Let us define

(5.4) s′k :=

{
sk, if k ∈ I0,
sβlong , if k = j.

Then, sk1sk2 · · · skm is a translation if and only if s′k1s
′
k2
· · · s′km = 1. In this case, it equals

sk1sk2 · · · skm(s′k1s
′
k2 · · · s

′
km)−1,

which can be written as a product of conjugates of the translation s′jsj = ψ(β∨long) =
∏
k∈I0 T

〈αk,β∨long〉
i .

In other words, the translations of W are exactly ψ(Q∨0 ). �

Proof of Proposition 5.1. Consider any valid firing sequence starting from ub. We first show that
the same firing sequence, applied to ρj , only involves firing vertices of amplitude less than −1. By
Proposition 2.1, each amplitude of the original sequence has the form β · ub for some positive root
β, and applied to ρj , the amplitude fired is β ·ρj . We need to show that β ·ρj < −1. More generally,
we show this assuming only that β is positive and β · ub is negative.

Note that β ·ub = β ·ρj + bβ ·ωj . We claim that β ·ωj ≥ 1. Indeed, otherwise β is a positive root
supported away from j (i.e., on I0), and this would imply β · ub = β · ρj > 0, since ρj is dominant
on I0. This is a contradiction, so β · ωj ≥ 1.

By hypothesis, b > 1 and β · ub < 0. So, β · ρj = β · ub − bβ · ωj < −1, as desired. So a valid
firing sequence for ub gives a firing sequence for ρj where are amplitudes fired are less than −1.

We next show that, starting at ub, the numbers game terminates at a configuration of the form
yib := (b− 1)ρi + bωi, for some extending vertex i (we will show that i = ι(j) later). The numbers
game for ub must terminate in finitely many moves, by Theorem 1.2.(iii). The terminal configuration
is the unique dominant configuration in the Weyl orbit of ub.

We claim that, by the assumption on b, the configuration yib is dominant. First, since b > 1,
(yib)` > 0 for ` 6= i. Next, (ρi)i = −L(sβlong), and hence (yib)i = (1−b)L(sβlong)+b, which is positive

iff b < 1 + 1
L(sβlong )−1

. Thus, yib is dominant. Moreover, yib is positive, i.e., in the interior of the

dominant chamber. Hence, it suffices to show that yib is in the Weyl orbit of ub, for some extending
vertex i.

Recall the translations Tk of (5.2). Let us denote these by T jk ; for any extending vertex i, denote

the corresponding translations by T ik. Fix an extending vertex i. By Lemma 5.3, for all k 6= i,
there exists an automorphism γik of the extended Dynkin diagram Γ such that tik = T ikγ

i
k ∈ W .

Note that
∏
k 6=i T

i
k(y

i
b) = −ρi + bωi. We can write

∏
k 6=i T

i
k = γw where γ is an automorphism of

Γ and w is in W . So the W -orbit of yib contains γ−1(−ρi + bωi) = −ργ−1(i) + bωγ
−1(i). Since γ is

an automorphism of Γ, the vertex i′ := γ−1(i) is an extending vertex. Moreover, the map i 7→ i′

must be a bijection, since we can apply an automorphism of Γ to everything, and the yib are all in
distinct Weyl orbits as they are distinct dominant vectors. Hence, there exists a choice of i such
that i′ = j. Let i be this choice. Thus, yib is in the W -orbit of −ρj + bωj .

By playing the numbers game on I0, the configuration −ρj+bωj can be taken to ub = ρj+bωj . As
a result, ub is in the Weyl orbit of yib. Since we also showed that yib is in the interior of the dominant
Weyl chamber, ub is in the interior of its Weyl chamber, and the element w ∈W constructed such
that w(ub) = yib is unique.

Next, take any full firing sequence ub → · · · → yib. We now show that the same firing sequence
takes ρj to −ρi. Since we already proved that this is a firing sequence of vertices of amplitudes less
than −1, it will then follow from Theorem 3.3 that i = ι(j).
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To prove the claim, apply the firing sequence instead to ux = ρj + xωj , for x an indeterminate.
By construction of the element w ∈ W which takes ub to −ρi + bωi above, we see that the same
element takes ux to −ρi + xωi. Since w is the unique such element, the firing sequence itself must
take ux to −ρi + xωi. Setting x = 0, we see that it takes ρj to −ρi, as desired.

We are now ready to prove that any firing sequence from ρj of vertices of amplitude less than
−1 is also a valid firing sequence for ub. It suffices to prove the result for a full firing sequence,
i.e., one of the form ρj → · · · → −ρι(j). By Proposition 2.1, the corresponding product of simple
reflections is reduced. By Lemma 3.6, the resulting element w ∈W is independent of the sequence.

Now, if we apply this sequence of firings to ub, the result w(ub) must be y
ι(j)
b , since it is true for at

least one sequence, namely one obtained from a valid firing sequence ub → · · · → y
ι(j)
b . Moreover,

the lengths of the sequences must be the same.
To conclude, we claim that, if u → · · · → v is any valid firing sequence with v dominant (i.e.,

a full firing sequence), then any other firing sequence from u to v of the same length is also valid.

Applied to our original sequence with u = ub and v = y
ι(j)
b , this yields the desired result.

To prove the claim, recall the following construction, introduced earlier in [GS09, (3.5)]: Given
u, consider the set Xu := {α ∈ ∆+ | α · u < 0}. Each valid move of the numbers game decreases
the size of this set by one. On the other hand, if we fire any vertex with nonnegative amplitude,
the set does not decrease in size. Hence, the valid firing sequences u → · · · → v (when they
exist) are exactly the firing sequences of minimal length. This proves the claim, and hence the
proposition. �

Remark 5.5. In view of Proposition 2.1, the claim occupying the last two paragraphs of the proof
can be reformulated as follows (in the case where u is in the interior of its Weyl chamber, as is our
situation): A firing sequence from an arbitrary configuration u to a configuration w(u) ∈ RI>0, for
w ∈W , is valid if and only if the length of the sequence is L(w). See also Lemma 6.1 and its proof.

Note that the number of firing steps to get from ub to (b−1)ρι(j)+bωι(j) is the number of reflecting

hyperplanes separating ub from the fundamental domain. In type Ãn, we can compute this directly
as follows. Let α ∈ ZI≥0 be such a positive root, and let m := αj . Then α = (m−1)δ+α′, where α′

is a positive root supported on a segment containing j, of length ≤ n−m. Conversely, any m ≥ 1
and α′ as above uniquely determine a positive root α ∈ ZI≥0 separating ub from the fundamental

domain. Let us identify I ∼= {0, 1, 2, . . . , n}, with j = 0, and with two integers adjacent if they
differ by one modulo n+ 1. Then, to pick a pair of α′ = αk + αk+1 + · · ·+ αn + α0 + α1 + · · ·+ α`

and the integer 1 ≤ m ≤ n− (n − k + ` + 2) is equivalent to picking the triple ` < ` + m < k − 1
of distinct integers in {0, 1, 2, . . . , n} (where we take k − 1 modulo n + 1, i.e., set k − 1 to be n if

k = 0). Thus, the total number of such α is
(
n+1
3

)
.

We will prove a more general result (and for any extended Dynkin graph) in §8 below.

Remark 5.6. The results of this section allow one to prove Proposition 3.8. We briefly sketch the
proof. The first statement, that ι extends to a unique automorphism of Γ, is immediate from
the explicit formula for ι. Alternatively, note that ι must commute with all permutations of the
extending vertices obtained from automorphisms of Γ which preserve C, and this already implies
the first statement. In fact, it narrows the possibilities for ι down to at most two choices for each
graph: either the trivial automorphism, or the unique nontrivial involution in the center of Aut(Γ)

in the cases Ã2m−1, B̃m, C̃m, D̃m, and Ẽ7. So one can actually restrict to the latter cases (and,

using folding, i.e., viewing configurations in C̃ as configurations in Ã which are symmetric under

the antipodal map, these cases are equivalent, and similarly the type B̃ and D̃ cases are equivalent).
To prove the stated formula, it suffices to compute the map i 7→ i′ from the proof of Proposi-

tion 5.1: since this sends ι(j) to j for all j, and ι is an involution, this map is exactly ι. We can
12



do this on a case-by-case basis as follows. Given an extending vertex i, it suffices to compute the
element γ ∈ Aut(Γ) such that

∏
k 6=i T

i
k = γw where γ is an automorphism of Γ and w is in W . To

do so, first we compute explicitly the elements γik ∈ Aut(Γ) such that tik = T ikγ
i
k is in W , which is

straightforward. Then it is straightforward to compute γ from this and hence i′ = ι(i). Note that,
by the preceding paragraph, it suffices to do this for a single extending vertex i, and only in types

Ã2m−1, D̃m, and Ẽ7 (alternatively, one can replace type Ã by C̃ and/or type D̃ by B̃).

6. Identifying Pi with an interval in the weak order

As we see, the graded poset W j
0 is quite different from the poset corresponding to W0 under the

weak or Bruhat orders: rather than having at most quadratic degree in the number of vertices of

the Dynkin diagram, the top degree of W j
0 is cubic in the number of vertices, at least in types A

(we will see later on that the same is true in all types).

Using Proposition 5.1, we can identify the poset W j
0 with an interval under the (left) weak order

in the affine Weyl group. First, note that, for every element v ∈ P j ∼= W j
0 obtained from ρ by a

sequence of firings i1, i2, . . . , im ∈ I of amplitudes less than −1, Lemma 3.6 shows that the element
simsim−1 · · · si1 ∈W depends only on v and not on the choice of firing sequence. That is, we obtain

an embedding P j ↪→ W . Let ϕ : W j
0
∼= P j ↪→ W be the resulting composition. This is a section

of the quotient χ : W � W0 defined by w(v) = χ(w)(v) for any v ∈ RI0 , i.e., χ(si) = si for i ∈ I0,
and χ(sj) = sβlong is the reflection about the maximal root βlong of ∆0. By ϕ being a section of χ,

we mean precisely that the composition χ ◦ ϕ : W j
0 → W0 equals the inclusion map. We will now

show that the image poset ϕ(W j
0 ) ⊂W is nothing but an interval in W under the weak order.

Recall first the definition of weak order. For g ∈W , the length of g, denoted L(g), is the minimal
number of simple reflections si needed to multiply to g. The left weak order in W is the ordering
such that g ≤l h if and only if L(h) = L(g) + L(hg−1), and the right weak order in W is the
ordering such that g ≤r h if and only if L(h) = L(g) + L(g−1h).

Generally, define the numbers game ordering by: u is less than v if v can be obtained from u by
playing the numbers game.

Lemma 6.1. Let Γ be any graph associated to a Coxeter group W . Given any configuration u for
which the numbers game terminates at v = w(u) for w ∈ W , the map W → RI , g 7→ g(u) restricts
to an isomorphism of the interval [id, w]<l with the numbers game poset from v to u.

Proof. By strong convergence, if a valid firing takes g(u) to sig(u), where g ∈W and u is dominant,
then L(sig) = L(g) − 1. As a consequence, it inductively follows that it takes exactly L(g) moves
to take g(u) to u by playing the numbers game. The result follows immediately. �

In our situation, let wtop be the element of W such that wtop(ub) is dominant. Proposition 5.1
tells us that the poset P i is isomorphic to the numbers game poset from ub to wtop(ub). This is
nothing but the interval [e, wtop] in the left weak order. To summarize:

Corollary 6.2. The isomorphism ϕ takes the poset W j
0 to the interval [1, ϕ(wtop)]<l.

In the next section, we will recall the geometric way to think of this interval.

7. Triangulation of the unit hypercube in the reflection representation

Denote by Kb := {v ∈ Hb | vi ∈ [0, b],∀i ∈ I0} the “unit hypercube” in the hyperplane Hb :=
{v ∈ RI | δ · v = b}. Note that Kb is a fundamental domain under the group generated by the
translations Tj used in Lemma 5.3, and its image under Hb ∼→ RI0 is the hypercube [0, b]I0 .
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(1,1,−3)

(−2,1,3) (2,−3,−1)

(−1,3,−1)

Figure 2. The graph Γ(W j
0 ) in B2, and the unit hypercube in B̃2

Let us associate to the poset W j
0 its Hasse diagram Γ(W j

0 ), i.e., the graph whose vertices are

elements of W j
0 and whose directed edges are g → h such that h(ρ) is obtained from g(ρ) by firing

a single vertex of amplitude less than −1.
Let D ⊂ Hb be the dominant Weyl chamber, i.e., D = {v ∈ Hb | vi ≥ 0,∀i ∈ I}. To any polytope

that is the union of Weyl chambers, we associate a dual directed graph, which is the usual dual
graph forgetting orientation, with orientation given by w(D)→ wsi(D) when L(w) < L(wsi).

Proposition 7.1. The graph Γ(W j
0 ) is isomorphic to the dual of the triangulation of the unit

hypercube Kb by Weyl chambers.

Proof. The dual of the triangulation of Kb is the interval [1, w′]<r under the right weak order, where
w′ is the longest element such that w′D ⊂ Kb. We claim that w′ = (wtop)−1. Given the claim,
the result follows immediately from the fact that [1, wtop]<l is isomorphic to [1, w′]<r under the
inversion map (which sends the left weak order to the right weak order).

To prove the claim, first note that the Weyl chamber containing ub is in Kb and is the one incident
to the corner v of Kb that is opposite to e, i.e., to the corner v given by vi = b for i ∈ I0. (To see
that ub and v are in the same Weyl chamber, one can take b very close to 1 without changing which
chamber ub is in, which would make ub very close to v.) Thus, ϕ(wtop)−1 is the longest element
which takes D to Kb, i.e., we must have w′ = ϕ(wtop)−1. �

In figure 2, we demonstrate the above concepts in type B̃2. On the left, we depict the graph

Γ(W j
0 ). The point (a, b, c) means the point of RI with those coordinates. Our convention is that

the first coordinate corresponds to the root (1, 0) of B2, the second coordinate to the root (−1, 1)
of B2, and the third coordinate to (−1,−1), the negation of the longest root. On the right, we

show the unit hypercube of B̃2, and how Γ(W j
0 ) occurs as the dual to this hypercube.

8. The rank generating function of W j
0

8.1. The general formula. In what follows, we will consider every subset of W as being endowed
with the graded poset structure given by the right weak order, <r. Also, for every finite Coxeter
group associated to a graph Γ0 with vertex set I0, let m1,m2, . . . ,m|I0| be its Coxeter exponents.

Recall that the rank generating function h(P ; t) of a graded poset P is defined as

(8.1) h(P ; t) =
∑
d≥0
|{x ∈ P : |x| = d}|td,
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where |x| denotes the degree of x. The main goal of this section is to explicitly compute the rank

generating function of the graded poset W j
0 :

Theorem 8.2. The rank generating function of P i is given by

(8.3) h(P i; t) =

∏
i∈I0(1− tL(ti))∏|I0|
i=1(1− tmi)

.

Here, the elements ti ∈W are the translations as defined in the Lemma 5.3.
Note that, evaluating the polynomial at t = 1 and using that W0 decomposes into isomorphic

copies of P i, one copy for each extending vertex, we obtain (1.3).
We remark that there is always a way to rearrange the factors in the denominator, i.e., to assign

to each vertex i ∈ I0 an exponent mi, so that 1−tL(ti)

1−tmi = 1+tmi+t2mi+· · ·+tL(ti)−mi is a polynomial.
In some sense, this can be done uniquely: see §8.2.

Proof. Let H+ ⊂W be the semigroup generated by the elements ti defined in Lemma 5.3, i.e., the
elements of W of the form Ti1Ti2 · · ·Timγ, where i1, . . . , im ∈ I0, the Tij ’s were defined in 5.2, and
γ ∈ Aut(Γ). We claim that

(8.4) W = W0H+ϕ(W j
0 )−1,

and moreover that this is a direct product decomposition, i.e., every element w ∈ W has a unique

decomposition as w = w0hϕ(w′)−1 where w0 ∈ W0, h ∈ H+, and w′ ∈ W j
0 . Finally, we claim that

this decomposition satisfies

(8.5) L(w) = L(w0) + L(h) + L(ϕ(w′)−1).

As a consequence, by taking rank generating functions (using the well known formulas [BB05,
Theorems 7.1.5, 7.1.10] for h(W ; t) and h(W0; t)),

(8.6) h(W ; t) =
h(W0; t)∏|I0|
i=1(1− tmi)

= h(W0; t)
1∏

i∈I0(1− tL(ti))
h(W j

0 ; t),

which proves the theorem, subject to proving (8.4) and (8.5), which we do now. Applying both
sides of (8.4) to the dominant Weyl chamber in Hb, the claim follows from the statement that a
fundamental domain for W0 ⊂W in Hb is given by the image of the dominant Weyl chamber under

ϕ(W j
0 )−1H+, i.e., the cone {v ∈ Hb | vi ≥ 0,∀i ∈ I0}. In turn, this statement follows because,

under the projection Hb ∼→ RI0 by forgetting the j-coordinate, this cone is the preimage of the
dominant W0-chamber in RI0 . �

8.2. Explicit formulas. To explicitly write down h(W j
0 ; t), it is enough to write down the lengths

L(ti) and the Coxeter exponents mi. In Figure 3 we organize this data suggestively, by labeling
the vertices of every Dynkin graph Γ0 by two positive integers: L(ti), and a Coxeter exponent mi

such that mi | L(ti), so that each mi occurs once. The figure uses the following notation: the odd
part, {m}2, of m ∈ Z+ is the maximal odd factor of m.

Set Qm(t) := tm−1
t−1 = 1 + t + t2 + · · · + tm−1. Then, as remarked in the previous subsection,

Theorem 8.2 implies that

(8.7) h(W j
0 ; t) =

∏
i∈I0

QL(ti)

mi

(tmi),

which is a factorization of h(W j
0 ; t) by polynomials whose nonzero coefficients are all 1.

The top degree of the poset W j
0 is the degree of the rank generating function. Using Figure 3, we

obtain this in Figure 4. For the series of types A and D, these degrees are cubic in the number of
vertices; in the exceptional cases, one may find similar identities, such as 120 = 6 ·5 ·4, 336 = 8 ·7 ·6,
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6

1
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5

Figure 3. The lengths L(ti) and Coxeter exponents mi for all Dynkin graphs

An Bn Cn Dn E6 E7 E8 F4 G2(
n+1
3

) n(n−1)(4n+1)
6

n(n−1)(4n+1)
6 4

(
n
3

)
120 336 1120 86 10

.

Figure 4. The top degrees of the posets W j
0

and 1120 = 1
3(16 · 15 · 14)). An upper bound on the number of valid moves in the numbers game

required to go from any vector v on the extended Dynkin graph satisfying δ · v = 0 to any element
of its Weyl orbit is given by the sum of this degree and the weak order degree of W0 (the latter
being quadratic in the number of vertices), and is therefore cubic in the number of vertices.

Let us consider the question of how unique the assignment of the exponents mi to the vertices
is such that mi | L(ti). For exceptional types, this assignment of the exponents to the vertices is
unique, except in the E6 case, where it is unique up to swapping mi with mi′ when i, i′ are images
of each other under an element of Aut(Γ0). For each infinite series, one can make a uniqueness
statement if one views the collection of graphs for all n together. For example, for types A,B, and
C, if we label the vertices for such a series subject to the condition that the maximal segment of
consecutively-numbered vertices goes to infinity, then this is the unique assignment of mi so that
the mi are given by a polynomial in n and i or the odd part of such a polynomial (and in fact the
vertices must be labeled as above, up to symmetry). For type D, this is true except for the leftmost
vertex above, which is assigned a different polynomial, n− 1.

We remark that, for types B and C, even though their finite Weyl groups are identical, the rank

generating functions h(W j
0 (Bn); t) and h(W j

0 (Cn); t) are not equal, and in particular W j
0 (Bn) 6∼=

W j
0 (Cn). However, h(W j

0 (Bn); 1) = h(W j
0 (Cn); 1); indeed, both must equal 1

2 |W0|. Moreover,

deg h(W j
0 (Bn); t) = deg h(W j

0 (Cn); t).

8.3. Combinatorial interpretation of the rank generating function for type A. In this
section, we consider the case of Ãn−1. In the proof of Theorem 8.2, we computed the rank generating
functions of the subset of W which takes the dominant Weyl chamber in Hb to the inverse image
of the dominant Weyl chamber for An−1; specifically, we showed that this series is 1/(1 − t)(1 −

16



t2) · · · (1 − tn−1). In [EE98, Section 9.4], Eriksson and Eriksson gave a combinatorial proof of
this result. We sketch their proof, and explain how to modify it to give a combinatorial proof

of Theorem 8.2. Let here W and W0 be the affine and finite Weyl groups of types Ãn−1 and
An−1, respectively. We identify the vertices I of the extended Dynkin diagram Γ with {1, 2, . . . , n}.
Then RI is identified with Rn. Let also D ⊆ Rn = Rn≥0 be the dominant Weyl chamber. Let

K1 := [0, 1]n ⊆ D be the unit hypercube.

Let S̃n be the set of permutations i 7→ σi of the integers such that σi+n = σi + n and
∑n

i=1 σi =∑n
i=1 i. Define a map ∂ : S̃n → Rn by (∂σ)i = σi − σi−1; it is well known that this map is injective

and its image is W (1, 1, . . . , 1). In this way, we produce a bijection ψ : S̃n
∼→W . The preimage

under ∂ of the dominant chamber of Rn consists of those permutations with σ1 < σ2 < · · · < σn.
The preimage of the unit hypercube consists of those permutations where, in addition, σ1 +n > σ2,
σ2 + n > σ3, . . . , and σn−1 + n > σn.

Given σ = (σi) such that ∂σ ∈ D, define an n-tuple γ = (γ1, γ2, . . . , γn−1) as follows. Let i be an
integer between 1 and n− 1. Let Ui be the set of integers t such that t < σi+1 and t 6≡ σi+1, σi+2,
. . . , σn (mod n). Number the elements of Ui as u0 > u1 > u2 > · · · . Then, σi is in Ui. Define γi
by σi = uγi . If we do this for all i, we obtain γ = (γ1, . . . , γn−1).

Remark 8.8. The integer γi is the number of times that n− i occurs in the sequence δ• constructed
in [EE98].

It is straightforward to check that this defines a bijection φ : ∂−1(D) ∼→ Zn−1≥0 between the

preimage under ∂ of the dominant chamber and Zn−1≥0 . Furthermore, under this bijection, the unit

hypercube K1 corresponds to φ(∂−1(K1)) = [0, 1]× [0, 2]× · · · × [0, n− 1], i.e., the tuples such that
0 ≤ γi < i for all i.

Proposition 8.9. Let ∂σ be in the dominant chamber and γ = (γi) = φ(σ) as above. Then, the
length of ψ(σ) is

∑
i(n− i)γi.

Proof. We claim that σ1 +n > σj if and only if γ1 = γ2 = · · · = γj−1 = 0. Proof: Let Ui be defined
as above for 1 ≤ i ≤ n− 1. Then, there are precisely j− 1 elements of Uj−1 which are greater than
σj − n. Now, the following conditions are equivalent: (a) σ1 is greater than σj − n; (b) σ1, σ2, . . . ,
σj−1 are all greater than σj − n; (c) σ1, σ2, . . . , σj−1 are the j − 1 largest elements of Uj−1; (d)
γ1 = γ2 = · · · = γj−1 = 0. This proves the claim.

We prove the proposition by induction on
∑
γi. The result is obvious when all of the γi are zero,

so we may assume this is not true. Let γ1 = γ2 = · · · = γj−1 = 0 and γj > 0. So σj < σ1+n < σj+1.
Consider the element σ′ defined by (σ′1, σ

′
2, . . . , σ

′
n) = (σ2 − 1, σ3 − 1, . . . , σj − 1, σ1 + n− 1, σj+1 −

1, . . . , σn − 1). Then ∂σ′ is in the dominant chamber. It is not hard to verify that the vector γ′ =
(γ′1, . . . , γ

′
n) := φ(σ′) corresponding to σ′ is (0, 0, . . . , 0, γj−1, γj+1, . . . , γn−1). Let t : Z→ Z denote

the map x 7→ x+ 1. Conjugation by t is a length preserving automorphism of S̃n (where by length
of σ, we mean L(ψ(σ))). Then, t−1 ◦σ ◦ t = ω ◦σ′, where ω is an (n− j+ 1) cycle. It is not difficult
to see that the RHS composition is length-additive, i.e., L(ψ(ω ◦ σ′)) = L(ψ(ω)) + L(ψ(σ′)) (e.g.,
one can use the standard formula for length, L(ψ(σ)) = |{(i, j) | i < j, 1 ≤ i ≤ n, σ(i) > σ(j)}|).
Hence L(ψ(σ)) = L(ψ(σ′)) + (n− j). �

Hence, we have a bijection between the unit hypercube and {0} × {0, 1} × · · · × {0, 1, . . . , n− 2}
where the element corresponding to (γ1, γ2, . . . , γn−1) has length

∑
(n− i)γi. This gives a bijective

proof that the rank generating function of the unit hypercube is
∏n−1
i=1

(
1 + tn−i + t2(n−i) + · · ·+ t(i−1)(n−i)

)
.

We note that Eriksson and Eriksson also give combinatorial proofs of rank generating functions
for other classical types; these proofs might be able to be similarly adapted.
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